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We consider a network of deterministic and stochastic locally coupled oscillators with positive or negative
dissipation and local time-delayed feedback. �i� For a deterministic system, we study propagation of waves
through the network. We show that time delay leads to a coexistence of several neutral modes with different
wave numbers and group velocities, which we compute analytically. �ii� For noisy system, we study the
response of the network to external random forcing correlated in space and uncorrelated in time. Below the
threshold of spatial instability, noise induces spatiotemporal fluctuations, which can be characterized by the
structure function. We give an analytical expression for the structure function and demonstrate the effect of the
time delay and of the correlation length of noise on the wave number of the most excited mode.
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I. INTRODUCTION

Periodic structures consisting of a large number of elastic
or stiff identical beams or plates coupled to adjacent neigh-
bors find various important applications in engineering. Stiff
beams on elastic supports serve as a basis for high-storey
buildings. Elastic plates on regularly spaced stiffeners are
typical in the aeroplane design, where they are used to con-
struct fuselage structure or a wing. Understanding of vibra-
tional properties of these periodic structures in response to
deterministic or random forcing is crucial as it provides us
with information about critical loads and forces, which may
lead to breakdown of the whole structure.

From the theoretical viewpoint the propagation of waves
in linear �1–6� and nonlinear �7–9� periodically supported
beam has been intensively studied in the past. It has been
shown that in the damping-free case �1,2�, i.e., in the case
when every single beam oscillates without damping, har-
monic waves can propagate in the system provided that their
frequencies lie within the so-called “propagation zones.” The
waves with other frequencies die out with fixed decay rate as
they spread. For a nonzero damping, free waves can no
longer exist without external forcing �3,8�. Due to omnipres-
ence of fluctuations and noise in real life the random external
forcing can never be eliminated. Depending on the statistical
properties of the fluctuating external field, different modes
are being constantly excited in the system with different en-
ergies �amplitudes�. Response of a periodically supported
beam to convected random loading and to forcing by random
acoustic wave has been studied in �10,11�, where the average
amplitude of the beam curvature was determined.

In spatially extended systems, time delays appear natu-
rally due to the finite propagation times of the perturbations.
The role of global and local time delay feedback in spatially
extended systems has been extensively studied. From the
viewpoint of spatiotemporal pattern formation, time delay
can modify, suppress, or even induce spatial instability
�12–18�. Below the stability threshold, i.e., when the homo-
geneous steady state is stable, external noise leads to perma-
nent excitation of stable modes and, therefore, serves as in-
dicator for instability. This effect is known as noisy precursor

of bifurcations �19,20�. The response of a spatially discrete
periodic system to random fluctuations can be characterized
by the space-correlation function G�i�, which is computed as
ensemble averaged product of the displacements xi�t� of the
ith element, i.e., G�i�=limN→��1 /N�� j=1,Nxj�t�xj+i�t�, where
N denotes the number of elements in the periodic chain. Spa-
tially Fourier-transformed correlation function S�k�
=��j=0,N−1�G�j�exp�2�Ikj /N�, where I=�−1, is called struc-
ture function �20�. In what follows, we will refer to the criti-
cal values of system parameters at which the homogeneous
steady state loses its stability as a stability threshold. With
this, “below the threshold” denotes a stable homogeneous
steady state. Close to stability threshold, the structure func-
tion attains maximum at a certain wave number kmax which is
close to the wave number kLS of the least stable mode in the
spatially periodic system. Further away from the stability
threshold, the dominance of the mode kLS becomes less pro-
nounced, which leads to the increased difference between the
two wave numbers kmax and kLS.

Apart from the applications in engineering, a chain of
locally coupled oscillators can be used to study the phenom-
enon of synchronization which is relevant to some physical
and biological systems such as neural networks. An exten-
sive overview of neural dynamics and of signal transmis-
sions through a network can be found, for instance, in Ref.
�21�. The effects of noise and of time delays on the stability
of phase-locked states in neural networks have been ad-
dressed in Refs. �22,23�. Exponential stability of networks
with delay and deterministic input signals was considered in
Refs. �24–26�. However, it should be emphasized that in case
of neural networks, a single element �oscillator� is assumed
to be in the excitable regime, when decoupled from the rest
of the system. This makes the problem essentially nonlinear.

Here, motivated by various applications in engineering
�2,4� and physics �27�, we focus on a chain of linear damped
oscillators with time-delayed feedback coupled locally via a
diffusive coupling to a random forcing correlated in space
and uncorrelated in time.

The main results are as follows:
�i� First, we study the propagation of wave packets

through the network. We show that finite delay times induce
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multiplicity of neutral modes, which correspond to a zero
attenuation coefficient. We analytically compute the wave
number as well as the group velocity of neutral modes as a
function of the delay time.

�ii� Second, we give an analytical expression for the struc-
ture function of the system driven by additive space-
correlated noise.

�iii� Third, we show that noisy precursor of the delay-
induced spatial instability is strongly affected by the correla-
tion length of the external fluctuating field. In other words,
for a fixed subcriticality, there exists a finite correlation
length of noise for which the maximum in the structure func-
tion disappears and the bifurcation can no longer be detected.

II. MODEL: RING OF LOCALLY COUPLED NOISY
DAMPED OSCILLATORS WITH TIME-

DELAYED FEEDBACK

We consider a ring of N damped oscillators with time
delay coupled locally via a diffusive coupling. The evolution
equations for the ith oscillator are given by

ẍi = �ẋi − �0
2xi + K�ẋi

��� − ẋi� + ��xi+1 + xi−1 − 2xi� + �2D�i�t� ,

�1�

where � is the delay time, ẋi
���= ẋi�t−��, � is a strength of the

local coupling, D is the noise intensity, and �i�t� has the
space-time correlation function given by ��i�t��k�t���
=	 exp�−		i−k	�
�t− t��. The discrete spatial Fourier trans-
form of 	 exp�−		i−k	� is obtained as ĝ��̃�=	2 / �	2+ �̃2�,
with �̃2 given by 2�1−cos� 2�k

N �� �20�. The discrete wave
number k changes in the limits from k=0 to N−1.

The particular choice of the form of the delayed feedback
is to some extent arbitrary and was taken as one of the sim-
plest possible, also following the earlier works on the control
of noise-induced oscillations for consistency �28,29�. How-
ever, the same approach can be used to obtain analytical
results for other forms of linear delayed feedback.

III. ANALYSIS OF THE NOISE-FREE SYSTEM

A. Stability

Before studying the subthreshold noise-induced fluctua-
tions in Eq. �1�, we need to determine the stability domain in
the deterministic case, i.e., in the case of D=0. The noise-
free Eq. �1� has a trivial homogeneous stationary solution
xi= ẋi=0. Introducing new variable yi= ẋi we can rewrite Eq.
�1� as a set of 2N first-order equations. Taking discrete spa-
tial Fourier transform of N-dimensional vectors xi, yi, and �i,
we obtain in the Fourier space

ẋ̂k = ŷk,

ẏ̂k = �ŷk − �0
2x̂k + K�ŷk�t − �� − ŷk� + x̂k2�
cos�2�k

N
� − 1
 ,

�2�

where x̂k and ŷk denote the kth Fourier component of xi and
yi, respectively. Note that in the Fourier space, the equations

in Eq. �2� are decoupled. This holds only for a chain of
uniform oscillators driven by additive noise, i.e., for the
noise intensity D, which does not depend on the variables
�xi ,yi�.

Stability threshold is determined from the Jacobi matrix
of Eq. �2� by setting the real part Re � of the eigenvalue � to
zero. Trivial stationary state xi=yi=0 becomes unstable ei-
ther via Andronov-Hopf bifurcation at k=0 or via an oscil-
latory Turing bifurcation at k�0. Critical values of the pa-
rameters are found from the following set of equations:

0 = − �2 − �K sin �� + �2, 0 = � − K + K cos �� ,

�3�

where � is the imaginary part of the eigenvalue � and �2

=�0
2−2��cos�2�k /N�−1�.
In the uncoupled case, i.e., for �=0 the stability threshold

in the parameter space �� ,�� is shown in Fig. 1�a� by a
dashed line. The trivial state is stable in the region below this
line and unstable in the area above it �shaded region�. Note
that the stability threshold for the homogeneous mode k=0 is
given by the same line as for �=0 and K=0.1. To avoid
confusion we will refer throughout the paper to the mode
with k=0 as to the homogeneous mode, contrary to the neu-
tral mode, which stands for the mode with zero real part of
its eigenvalue.

For ��0, the stationary solution is stable if Re �
0 for
all N /2 modes. It should be emphasized that the shortest
possible wavelength has a spatial period equal to 2 which
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FIG. 1. �Color online� �a� Loci of the Andronov-Hopf bifurca-
tion of the trivial state xi=yi=0 in the parameter plane �� ,�� for
�=10 and K=0.1. Solid, dashed, and dotted lines correspond to
different values of the wave number 2�k /N as in the legend. A
given wave number is stable below the corresponding line and is
unstable above it. �b� Stability threshold of the trivial state for dif-
ferent K. On the solid line for �� �0,�1� the trivial state becomes
unstable via a Andronov-Hopf bifurcation of the homogeneous
mode k=0; for �� ��1 ,�2� the shortest possible mode with k=N /2
loses its stability. For �2
�
�3 there exists only one neutral mode
with a finite wave number 0
2�k /N
�. For ���3 several modes
become unstable simultaneously. Critical delay times �2 and �3 are
given by �2=2� /��0

2+4� and by �3=2�2. �c� Same as in �b� for
different values of � as given in the legend.
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corresponds to the wave number 2�N / �2N�=�. As the wave
number 2�k /N increases, the stability threshold which cor-
responds to this particular 2�k /N changes as illustrated in
Fig. 1�a�: dotted and solid lines show stability thresholds for
2�k /N=0.2 and 2�k /N=�, respectively, for �=10. As we
see, almost for all values of the delay time �, the trivial state
becomes unstable at �=0 except for the small area around
the origin which is marked by a box in Fig. 1�a�. In this area
the lines correspond to the shortest possible wavelength
equal to 2 �with k=N /2� and to the homogeneous mode k
=0, which form the boundary of the stability domain. The
enlarged area around the origin together with the stability
threshold of the trivial state is shown in Fig. 1�b�. The solid
line corresponds to �=10 and K=0.1. Dashed and dotted
lines in Fig. 1�b� show how the stability threshold changes
with the feedback strength K which values are given in the
legend.

The number of lobes of stability in the parameter plane
�� ,�� becomes bigger if � decreases. This is demonstrated in
Fig. 1�c�. As we see, for �=0.1 there are four lobes of sta-
bility, while for a larger coupling ��=0.5� only two lobes
remain.

Different scenarios of spatial instability are demonstrated
in Fig. 2�a�, where the real part of the largest eigenvalue
Re � is shown as a function of the wave number 2�k /N for
the same parameters as for the solid line in Fig. 1�b�. There
are three critical values of the delay time � denoted by �1, �2,
and �3 at which the bifurcation scenario changes qualita-
tively. Thus, �1 is defined as a double Hopf point. At this
point two modes become unstable simultaneously: the homo-
geneous mode with k=0 and the shortest possible mode with
2�k /N=�. For �1
�
�2, the shortest possible mode be-
comes unstable. The value of �2 can be computed analyti-
cally from Eq. �3�, �2=2� /��0

2+4�. For �2
�
�3, only
one mode becomes unstable with a finite value of the wave
number 0
2�k /N
�. For ���3 several modes lose their
stability simultaneously. Note that �3 is related to �2 as �3

=2�2=4� /��0
2+4�.

When crossing the threshold on the left branch, i.e., when
�� �0,�1� in Fig. 1�b�, the trivial state loses its stability via

Andronov-Hopf bifurcation with the wave number k=0. The
corresponding bifurcation scenario is shown in Fig. 2�a� by
solid lines. On the right branch, �� ��1 ,�2�, the trivial state
becomes unstable via an oscillatory Turing bifurcation with
the wavelength 2; wave number equals 2�k /N=�. The cor-
responding bifurcation scenario is shown by dashed lines in
Fig. 2�a�. Bifurcation scenario for �2
�
�3 is demonstrated
by dashed-dotted lines in Fig. 2�a�. For simplicity, the case
when several modes lose their stability simultaneously is not
shown.

For �=0 the critical wave number 2�kc /N, which corre-
sponds to the neutral mode with Re���=0, can be computed
analytically from Eq. �3�. It is given by

2�kc

N
= arccos��0

2 + 2� − �2�m

�
�2

2�
� , �4�

where index m numbers the critical modes, i.e., �m
=1,2 , . . .�.

Figure 2�b� shows 2�kc /N directly on the stability thresh-
old, i.e., for �=0, as a function of the delay time � for the
parameters as for the solid line in Fig. 1�b�. Several modes
become unstable simultaneously for ���3.

B. Group velocity of neutral modes in the noise-free system

We now study the propagation of neutral modes, which
correspond to a vanishing real part of the leading eigenvalue.
As pointed out in the previous section �see Fig. 1�b��, the
stability threshold is given by �=0 for ���2. In this case the
system becomes unstable via an oscillatory Turing instability
with, in general, multiple neutral modes with the correspond-
ing critical wave numbers 2�kc /N given by Eq. �4�. For �1

�
�2, the critical � is positive and the neutral mode has
the wave number 2�kc /N=�. For 0
�
�1, the only neutral
mode is the homogeneous one with 2�kc /N=0.

Every neutral mode with a specific wave number 2�kc /N
gives rise to a propagating wave packet, in which group ve-
locity VG is given by the derivative VG
=���2�k /N� /��2�k /N�, computed at the corresponding
critical wave number 2�k /N=2�kc /N. Multiplicity of neu-
tral modes leads to the fact that several wave packets with
different wave numbers can propagate through the system
simultaneously.

To compute the group velocity of neutral modes, we no-
tice that for the critical wave number 2�kc /N, the derivative
of the real part Re��� of any neutral mode vanishes; i.e., we
have two additional conditions on �: Re���=0 and
� Re����2�k /N� /��2�k /N�=0 at 2�k /N=2�kc /N. Now, by
setting �=0 and by differentiating the first equation in Eq.
�3� with respect to 2�k /N, we obtain

�VG�m =

��4�2 − 
�0
2 + 2� − �2�m

�
�2
2�0.5

2�m�2 + K��
, �5�

where index m numbers the neutral modes as in Eq. �4�.
It is worthwhile pointing out that Eq. �5� works only for

���2. For �
�2, the neutral mode has the wave number
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FIG. 2. �Color online� �a� Dispersion relation: real part of the
largest eigenvalue � vs wave number 2�k /N for �=10, K=0.1, and
three different values of the delay time � as in the legend. For each
� the real part Re � is plotted for three different �: slightly below
the corresponding critical value, directly at the threshold, and
slightly above the critical value. �b� Critical wave number 2�kc /N
of the neutral mode for �=0, as a function of �, as computed from
Eq. �4�. For ���3 there exist several neutral modes. Thick solid
lines indicate the wave number of the neutral mode with the highest
group velocity. Solid horizontal line represents the limiting value of
the wave number of the fastest neutral mode.
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either equal to zero �homogeneous mode� or to 2�kc /N=�
�shortest possible mode�. By differentiating the second equa-
tion in Eq. �3� with respect to 2�k /N, one can show that the
group velocity of these two modes is zero.

In Fig. 3 we show VG as a function of � for �=10 and
K=0.1. Numbers near each curve indicate the mode index m
and the thick solid line highlights the largest values of VG.
The wave numbers 2�kc /N of all neutral modes are shown in
Fig. 2�b� by dashed lines. The wave number of the fastest
neutral mode depends piecewise continuously on �, as indi-
cated by the thick solid line in Fig. 2�b�. For small �, the
wave number of the fastest mode gradually decreases, but as
� becomes very large, the index mf of the fastest mode grows
with � linearly according to

mf =
�

2�
��0

2 + 4��1/4. �6�

This leads to a saturation of the wave number of the fastest
neutral mode, i.e.,

lim
�→�

2�kc

N
= arccos
�0

2 + 2� − ���0
2 + 4��

2�

 . �7�

For �=10, the limiting values of lim�→�
2�kc

N =0.7527, as
shown in Fig. 2�b� by a horizontal line.

To illustrate the possibility of propagation of wave pack-
ets with multiple wave numbers, we solve Eq. �1� numeri-
cally for N=2048, �=10, K=0.1, and fixed delay time �=5.
To set up a wave packet with a specific wave number
2�kc /N, we use the following initial conditions: the initial
profile xi�t=0�=exp�−g�i−1024�2�cos�2�ikc /N� and initial
velocities ẋi=yi�t=0�=0, where g represents the initial width
of the wave packet.

Time evolution of the first neutral mode, i.e., m=1, is
shown in Figs. 4�a�–4�c�. Two wave packets with identical
wave numbers propagate in opposite directions with the
group velocity VG. The width of each packet increases and its
amplitude decreases with time due to dispersion and attenu-
ation of other stable modes, which form the packet. The evo-
lution of the second m=2, slightly shorter mode, is shown in
Figs. 4�d�–4�f� at the same time moments as in Figs.
4�a�–4�c�. Group velocity is visualized by computing the po-
sition of the amplitude of the packet as a function of time.
Figure 4�g� represents the comparison between the time evo-
lution of the maximum of xi computed numerically �dashed
lines� and motion with the group velocity imax=1024−VGt,
with VG, computed analytically from Eq. �5�.

To conclude this section, we have shown the twofold ac-
tion of time delay on the propagation of waves through the
system of coupled oscillators. First, time delay leads to the
existence of multiple neutral modes. Second, by changing �,
we can change the wave number of the neutral modes to-
gether with their group velocity.

C. Subthreshold noise-induced fluctuations

Below the stability threshold, additive noise induces fluc-
tuations in system equation �1�. This fluctuations can be
characterized by the space-correlation function G�i�, given
by G�i�= �xj�t�xj+i�t��, where � . . . � denotes ensemble average.
According to the Wiener-Khinchin theorem, the discrete spa-
tial Fourier transform S�k�=� j=1,NG�j�exp�2�Ijk /N� of the
function G�i� is given by

S�k� = �x̂k�t�x̂k�t�� = �xk
�0� , �8�

where �xk
��� is the time-correlation function of x̂k, which is

the Fourier transform of xi. Note that the function S�k� is also
known as structure function �20�. Physical meaning of the
structure function is the energy of fluctuations with the wave
number 2�k /N.

As pointed out in the introduction, in stable systems close
to their stability threshold noise can serve as an indicator for
instability or bifurcation. This effect is known as noisy pre-
cursor of bifurcations �19,20�. In zero-dimensional systems
close to the point of bifurcation, the power spectrum of
noise-induced fluctuations has a characteristic maximum
near the onset frequency of the bifurcation. Similarly, in spa-
tially extended systems, the structure function attains a maxi-
mum close to the critical wave number.

To compute the structure function S�k�, we consider noisy
equation �1�. Taking the discrete spatial Fourier transform,
we notice that the correlation function of the Fourier-
transformed noise �k�t�=��i=0,N−1��i�t�exp�2�ikI /N� is given
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FIG. 3. �Color online� �a� Group velocity VG of neutral modes
as a function of � as computed from Eq. �5� for �=10 and K=0.1.
Numbers indicate the index of the neutral mode; thick solid line
highlights the largest group velocity.
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by ��i�t��k�t���= ĝ�k�
ikN
�t− t��, where 
�x� is the Dirac
delta function and 
ik is Kronecker delta. This yields

ẋ̂k = ŷk,

ẏ̂k = �ŷk − �2x̂k + K�ŷk�t − �� − ŷk� + �2Dĝ�k�N�̂k�t� , �9�

where, as before, �2=�0
2−2��cos� 2�k

N �−1�, ĝ�k�=	2 /
�	2−2�cos� 2�k

N �−1��, and �̂k�t� are independent Gaussian

variables with the correlation function ��̂i�t��̂k�t���=
ik

�t− t��.

Time-correlation function �xk
��� of Eq. �9� was found

analytically for negative � in Refs. �28,29�. According to
Ref. �28�, the closed analytic expression for the variance �xk

2�
is given in units of the noise intensity DN by

�xk
2�

DN
=

�xk
�0�

DN
= ĝ�k�
E

R
+ Fe���E

R
cos W� +

1

R
sin W��
 ,

�10�

where

W =��2 −
�� − K�2 − K2

4
, � =

��� − K�2 − K2

2
,

F = −
� − K

K
−

��� − K�2 − K2

K
,

E =
W + Fe�−����� sin W� − W cos W��
� − Fe�−����� cos W� + W sin W��

,

R = �K + F�� − K��e�−������2 − W2��E cos W� + sin W��

+ 2W��E sin W� − cos W��� + ���2 − W2�E − 2�W�

��� − K + KF� . �11�

Note that in the limit of the uncorrelated noise, i.e., for 	
→�, the wave number 2�k /N enters Eq. �10� solely through
the function W.

In case of the uncorrelated noise �	=��, the structure
function S /DN is shown for fixed �=10 in Fig. 5 for three
different delay times, as indicated by numbers near each line.

As time delay increases, S /DN acquires a maximum at a
certain nonzero wave number 2�k /N. At �=0 there are no
spatial correlations in the subthreshold fluctuations, as the
homogeneous mode with k=0 has the largest energy. At �
=3, the energy of the subthreshold fluctuations with the wave
number at the peak of S /DN is of the same order as the
energy of the homogeneous mode. However, for �=5, the
peak energy is larger than S�k=0� /DN, resulting in a well-
pronounced spatial correlation on the length of lcorr=N /kmax,
where 2�kmax /N is the wave number at the peak.

To study the effect of the correlation length 1 /	 of noise,
we fix delay time to �=4 and compute S�k� for different 	,
both by numerical simulation of Eq. �1� and analytically,
using Eq. �10�. This is shown in Fig. 6. The upper curve in
the main panel in Fig. 6 corresponds to almost uncorrelated
noise, i.e., to 	=10. As 	 is decreased, two interesting phe-
nomena occur. �i� First, the power of the noise-induced fluc-
tuations at any finite wave number is decreased. This be-
comes clear as we gradually decrease 	 from 	=10 �upper
curve� to 	=1, 	=0.6, and 	=0.4 given by the second, third,
and fourth curves from the top, respectively. �ii� Second, the
wave number kmax at the maximum of the structure function
monotonically decreases with 	. At a certain value of 	, the
power of the fluctuations at kmax equals the power of the
homogeneous mode, i.e., S�kmax�=S�0�. For �=4, this situa-
tion corresponds to 	=0.6, which is given by the third curve
from the top in the main panel in Fig. 6. On further decreas-
ing 	, the maximum of S�k� at a finite wave number kmax
disappears, which means that external noise can no longer
serve as an indicator of the spatial instability.

The inset in Fig. 6 shows how kmax changes with 	 for
different delay times, as indicated by a number near each
curve. On thick solid lines the power of the fluctuations at
kmax is larger than the power of the homogeneous mode S�0�.

We now use Eq. �10� to find the range of the delay times
� for which the energy of the noise-induced fluctuations at
finite wave number is larger than the energy of the homoge-
neous mode k=0. For uncorrelated noise �	=�� and fixed
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FIG. 5. �Color online� Structure function S in units of the noise
intensity DN as a function of the wave number 2�k /N for 	=�,
�=−0.05, �=10, K=0.1, and different � as given by a number near
each line. Solid lines correspond to S computed numerically for a
ring of N=2048 coupled oscillators; dashed lines obtained from the
analytic expression Eq. �10�.

0 1 2 3
2πk/N

0

1

2

3

4

S(
k)

0 0.5 1 1.5
α

0

0.1

0.2

0.3

(2
πk

m
ax

)/
N

5

4.5

4

FIG. 6. �Color online� Structure function S�k� in units of the
noise intensity DN as a function of the wave number 2�k /N for
�=4, �=−0.05, �=10, K=0.1, and different 	: 	=0.4,0.6,1 ,10.
Parameter 	 increases gradually from lower curve to the upper
curve. Solid lines correspond to S computed numerically for a ring
of N=2048 coupled oscillators; dashed lines obtained from the ana-
lytic expression Eq. �10�. Inset: solid lines show the wave number
2�kmax /N at the maximum of S as a function of 	. Dashed lines
correspond to the minimum of S with the smallest wave number
2�kmin /N. Thick lines indicate areas where S�kmax� is larger than
S�0�.
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coupling strength �=10 and K=0.1, we plot in Fig. 7 the
wave number 2�kmax /N at the peak as a function of the
delay time. Solid lines highlight parameter values for which
S�0�
S�kmax�.

Form Fig. 7 we see that for small �, the structure function
acquires a maximum at zero wave number. However, there is
a critical delay time around ��4 when the maximum ap-
pears at the nonzero wavelength. As � is increased, the wave
number at the peak 2�kmax /N decreases and at ��6 it be-
comes zero again. This scenario repeats itself as � is being
increased further.

Figure 8 shows areas on the parameter plane �� ,K�, where
the structure function has a peak at a nonzero wave number,
which is higher than S�0�. Three different values of 	, 	
=�, 	=1, and 	=0.4, have been used as indicated by a
number in the leftmost family of the closed curves. The order
of curves, which correspond to different 	, is the same in
each family; i.e., 	 increases from the inner to the outer
closed curve.

The areas where S�kmax��S�0� are enclosed within the
curves. On the solid lines the peak appears at a nonzero wave
number; on the dashed lines the peak wave number becomes
zero. Interestingly, time delay can no longer induce spatial
correlations in the system if K is increased above some criti-
cal value. For instance, for 	=� and �=10, this critical
value is Kc=5.16.

IV. CONCLUSION

To conclude, we considered a chain of deterministic and
stochastic linear damped oscillators with time delay, coupled
locally via a diffusive coupling. In the noiseless limit we
studied the stability of the system with respect to spatiotem-
poral harmonic perturbations. For positive damping coeffi-

cient � and arbitrary but finite number N of oscillators in the
chain, time delay can stabilize the homogeneous steady state
in the system. Depending on the coupling strength � and the
feedback strength K, several islands of stability appear on the
parameter plane �� ,�� �see Figs. 1�b� and 1�c��. We have
shown that local time-delayed feedback induces multiplicity
of neutral modes with different wave numbers and group
velocities. Using analytical expression for the group velocity,
we have demonstrated how the wave number and the veloc-
ity of the wave packet change with time delay.

In case of noisy oscillators we focused on the subthresh-
old regime. In this case, external noise serves as a precursor
of spatial instability. We obtained an analytic expression for
the structure function of subthreshold fluctuations induced by
external noise correlated in space and uncorrelated in time.
Using the analytic formulas for the structure function, we
have shown that for finite correlation length of noise the
wave number, which is excited with the largest energy, de-
creases as compared with the wave number for uncorrelated
noise. Moreover, there exists a critical value of the correla-
tion length of noise at which the energy of the homogeneous
mode S�0� becomes larger than the energy of any other
mode. This shows that for a fixed subcriticality, i.e., at fixed
values of all parameters of noiseless system, there exists such
a correlation length of noise, below which external fluctua-
tions can no longer serve as a precursor of spatial instability.
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